星期三, 26 2 月, 2025
Home PV Technology Zinc-ion battery that stores solar energy

Zinc-ion battery that stores solar energy

U.K. researchers have developed a battery with a photocathode made of vanadium dioxide, which is used to harvest light and store zinc ions and zinc oxide as a charge transport layer. The device showed an efficiency of around 1.2% and capacity retention of around 73% after 500 cycles.

Source:pv magazine

University of Cambridge researchers have developed a photo-rechargeable zinc-ion battery that is able to harvest and store solar energy. “These cells were conceived as a low-cost energy harvesting and storage solution for off-grid communities in developing countries,” Professor Michael Volder told pv magazine.

The battery was built with a photocathode made of vanadium dioxide (VO2) which is used to harvest light and store zinc ions and zinc oxide (ZnO) as a charge transport layer. Vanadium dioxide was chosen for its bandgap energy in the visible light spectrum and the remarkable fast charge-discharge kinetics. Previously, the authors had implemented photo–batteries in cells with a surface of around 100cm2 and a 64cm2 optical window that allows light to reach vanadium oxide and recharge the battery.

Under the proposed configuration, electrons are extracted to the conduction band of the VO2 photocathode and then transported to carbon fiber (CF) through a zinc oxide (ZnO) layer, which is also intended at blocking holes.

“This combined action of electron extraction and blocking holes in VO2 leads to photocharging,” the researchers said, noting that the ZnO layer is used for charge transport and VO2 for energy storage.

The ZnO layer was coated on the current collector and the VO2 photocathode was synthesized directly on the ZnO layer.

“This improved charge separation and the interface between active materials, resulting in a 2.8 times higher photo-conversion efficiency compared to materials where the VO2 is physically mixed with an electron transport material,” the academics said.

The battery showed an efficiency of around 1.2%, which compares to around 0.6% in similar batteries manufactured with other photocathode materials. It also exhibited capacity retention of around 73% after 500 cycles.

“The next step is to test these batteries under real-life conditions,” Volder said.

The researchers described the device in “Vanadium dioxide–zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries,” which was recently published in Royal Society of Chemistry’s Journal of Materials Chemistry A of the Royal Society of Chemistry.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Pexapark records 25 European PPAs for 790 MW in January

European developers signed 25 PPAs for 790 MW in January 2024, according to the latest report from Pexapark. The result is a 7% month-on-month decrease...

JinkoSolar gets 66.5MWh PV and energy storage project in Germany

JinkoSolar, a world-leading photovoltaic and energy storage company, announced today that it has successfully signed a German photovoltaic and energy storage project. The project...

RCT Power attends Intersolar North America & Energy Storage North America

In California, USA. Intersolar North America & Energy Storage North America 2025 was held at the San Diego Convention Center from February 25 to...

Shanghai Electric and Guangdong Energy Group signed cooperation agreement

On the morning of February 26, Shanghai Electric and Guangdong Energy Group officially signed a strategic cooperation agreement under the joint witness of Wu...