星期三, 5 3 月, 2025
Home PV Technology Toshiba claims 8.4% efficiency for transparent cuprous oxide solar cell

Toshiba claims 8.4% efficiency for transparent cuprous oxide solar cell

The record efficiency was achieved by engineering the cell with reduced copper(II) oxide (CuO) and copper (Cu) impurities in the thin-film deposition. It showed an open-circuit voltage of 1.13 V, a short-circuit current of 10.63 mA/cm2, and a fill factor of 0.696.

Source:pv magazine

Japanese electronics manufacturer Toshiba has announced an 8.4% power conversion efficiency for a transparent cuprous oxide (Cu2O) thin-film solar cell. The result, the company claims, is the highest efficiency ever reported for any cell of this kind to date.

The cell was conceived for use in electric vehicles and high-altitude platform station (HAPS) applications. “The tandem solar cell offers the promise of more efficient solar modules by combining top and bottom cells that generate power at different wavelengths,” the manufacturer said in a statement.

The record efficiency was achieved by reducing copper(II) oxide (CuO) and copper (Cu) impurities during the fabrication of the cell’s Cu2O layer and, in particular, by carefully controlling the oxygen flow. These impurities are due to the reactive sputtering deposition method used in the manufacturing of the cell. “We used a transparent conducting oxide as the bottom electrode and fabricated a low-impurity Cu2O thin film by reactive sputtering using argon and oxygen,” the Toshiba research scientists stated.

The Cu2O thin films were deposited by reactive sputtering in mixed oxygen and argon atmosphere on transparent conducting oxide (TCO) on a glass substrate with TCO composed of double layers of antimony doped tin oxide (ATO) and indium tin oxide (ITO). “The ATO layer was chosen for its good electrical contact with the Cu2O layer,” the researchers further explained. “The thicknesses of the Cu2O thin films were varied from 2 to 5 μm.”

The cell was tested under standard illumination conditions and was found to have an efficiency of 8.3%, an open-circuit voltage of 1.13 V, a short-circuit current of 10.63 mA/cm2, and a fill factor of 0.696. The Cu2O thin films showed the highest transmittance with the lowest impurity ratio.

The scientists also conducted a device simulation analysis and found that the cell has the potential to reach an efficiency of over 10% by decreasing the surface velocity at p–n interfaces and increasing n-type carrier density at the n-layer. “With support from Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba will continue research to achieve the 10% PCE target for top Cu2O cells,” the researchers said. “Toshiba is also cooperating with Toshiba Energy Systems & Solutions Corporation in the development of large-scale Cu2O solar cells that are the same size as mass-produced silicon solar cells.”

The solar cell was described in the paper “Highly transparent Cu2O absorbing layer for thin film solar cells,” published in Applied Physics Letters (AIP).

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Romania subsidizes municipal authorities with 86% for solar power investments

The Ministry of Energy provided EUR 28.8 million for 105 photovoltaic projects of 23.1 MW in total in almost all counties of Romania. The...

Sungrow supplies inverters, battery system for hybrid solar park in Sweden

One of Sweden’s first hybrid solar parks has been deployed in Halmstad. Sungrow, which provided the inverters and battery system, said it is a...

Pertamina NRE to build solar panel assembly plant in W. Java, to be operable by 2026

Pertamina New and Renewable Energy (Pertamina NRE), a renewable energy subholding of State energy company PT Pertamina, is currently constructing a solar panel assembly...

Vietnam triples its clean energy goals, aims to get 16% of its power from solar

Vietnam is revising its energy plans to focus more on large solar farms and less on reliance on coal and natural gas. The fast-growing...