星期三, 26 2 月, 2025
Home PV Technology Paired with “wonder material,” over 21% efficiency demonstrated in perovskite solar cells

Paired with “wonder material,” over 21% efficiency demonstrated in perovskite solar cells

The use of phosphorene nanoribbons boosted the cell, putting it on par with traditional silicon cell output levels.

Source:pv magazine

Breaking research published in the Journal of the American Chemical Society demonstrated the efficacy of what has been hailed a “wonder material”: phosphorene nanoribbons (PNR).

The material, first produced in 2019, is comprised of ultra-thin “2D” layers that are one atom thick. Many theoretical use cases have been considered for the material, including enhancing batteries, biomedical sensors, and quantum computing.

Now, a research team from the Imperial College of London and University College London have brought the theoretical to the actual, demonstrating the photovoltaic-boosting effect PNR brings to solar cells. When applied in tandem with a perovskite solar cell, PNR-boosted cells achieved an efficiency above 21%, putting them on par with traditional silicon cell output levels.

Perovskites are hailed for being earth-abundant, and highly alterable by scientists. Improvements in efficiency and stability are being evaluated worldwide in test laboratories to find a possible counterpart to silicon solar cells, which are tied to some supply-chain constraints and labor concerns.

Image: T.J. Macdonald and T. Webb

PNRs directly aided the perovskite cells in “hole mobility.” In photovoltaics, the “hole” represents the partner of electrons in electric transport, so increasing hole mobility improves the speed and strength of the current between the layers of the device, improving overall efficiency.

The research team said that in addition to improving perovskite cells, the experimental validation of PNRs will also help create design rules for optoelectronics, which are devices that emit or detect light. Further experimentation will continue to modify the surface of the PNR, possibly improving the unique electronic properties of the material, said the team.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

NTU Singapore and Trinasolar Collaborate on AI-Powered Smart Energy Storage

Nanyang Technological University, Singapore (NTU Singapore) has partnered with Trinasolar, a global provider of photovoltaic (PV) and energy storage solutions, to develop advanced smart...

Trina Storage Partners with Pacific Green, Energizing Australia’s Sustainable Ecosystem

Trina Storage recently announced a significant collaboration with Pacific Green, a globally renowned energy storage developer. Together, they are working to construct the flagship...

AMEA Power Signs Agreements to Develop 1,500MWh Battery Energy Storage Systems in Egypt

AMEA Power, one of the fastest-growing renewable energy companies, has signed Capacity Purchase Agreements with the Egyptian government to develop the first standalone battery...

400W of free energy for 25 years – this company presents the first bifacial solar billboard

Next2Sun has unveiled the world’s first bifacial solar fence, a groundbreaking step in renewable energy that does more than just generate electricity—it also works...