星期日, 26 1 月, 2025
Home PV News German scientists develop solar facade with 50% higher yield

German scientists develop solar facade with 50% higher yield

The three-meter prototype consists of nine panels based on an aluminum compound. The PV elements of the facade can be tilted to capture more sunlight.

Source:Pv magazine

Germany’s Fraunhofer Center for Silicon Photovoltaics (CSP) and the University of Applied Sciences, Technology and Business (HTWK) Leipzig have developed a solar facade they claim out-performs current vertical building-integrated PV (BIPV) installations.

The German system, designed by HTWK Leipzig scientists and realized by their Fraunhofer CSP counterparts, features PV elements which can be tilted to capture more sunlight. “The photovoltaic elements that are integrated in this facade provide up to 50% more yield than planar solar modules attached to building walls,” said Sebastian Schindler, project manager at Fraunhofer CSP. “And the facade also looks good.”

The three-meter prototype features nine panels mounted in an aluminum compound.

The developers also came up with a method of integrating PV into concrete facades, particularly specially-designed carbon concrete – which absorbs carbon dioxide as it hardens, reducing its net carbon footprint.

Carbon-eating concrete

Researchers from both institutions worked with staff from the TU Dresden university on three concepts. “At the Fraunhofer CSP, we investigated how best to attach photovoltaic elements to such carbon-concrete facades – how to optimally combine the new type of concrete with the generation of solar power,” Schindler said.

One solution was to integrate the PV elements into the facade, with solar modules either poured directly into the concrete or laminated or glued to concrete slabs. However, it is also possible to attach the modules with push-buttons, screw connections or other fastening methods, making maintenance and repair work easier. “We were able to show that all three fastening options are technically feasible,” said Schindler.

A fitting solution

Ensuring the PV panels fit into the concrete was one of the challenges faced by the researchers, who also had to be careful not to screw modules into thin areas of concrete or surfaces containing carbon fibers.

The academics who came up with the design are now working on developing a commercial version under the SOLARcon: Concrete Facades 2.0 project they started in November.

In the meantime, the PV components and concrete sections of the prototype installation will be tested under different weather conditions and exposed to accelerated aging tests. Simulations are also planned to examine how the concrete and PV element connection point heat up in high temperatures and how the modules behave under high wind and pressure loads.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Riyadh Declaration Solar Empowers Land and People Action Plan

December 9, 2024 Riyadh, Saudi Arabia On December 9, 2024, the 16th Conference of the Parties (COP16) of the United Nations Convention to Combat Desertification (UNCCD)...

Liu Zhuo, Sales Manager of TBEA, delivered a speech titled “Green Energy Makes Life Better” at COP16

On the afternoon of December 9, Liu Zhuo, Sales Manager for the Middle East Region at TBEA, delivered a speech titled "Green Energy Makes...

Side Event Themed “Solar empowers land and People from scarcity to prosperity:Integrated Solutions for water, food and ecosystems” took place at COP16

The side event of the 16th Conference of the Parties to the United Nations Convention to Combat Desertification (UNCCD) (COP16) "Solar empowers land and People from...

COP16 China Pavilion Side Event Series Report: Wang Weiying of China Renewable Energy Engineering Institute Proposed Coordinated Development of Renewable Energy and Ecology in...

The China Pavilion held a side event with the theme of "Planning and Ecological Design of Solar PV Power Stations in Desert Areas" on the...