星期六, 23 11 月, 2024
Home PV News Solar Design From MIT Does Double Duty

Solar Design From MIT Does Double Duty

MIT researchers say a hybrid solar-thermoelectric system they're working on would provide a big advantage over conventional solar cells or solar thermal systems, particularly for household use: the ability to produce heat and electricity simultaneously. They propose accomplishing this mean feat through a clever reconfiguration of the standard parabolic trough.


In a typical parabolic system (like the one pictured below), a curved mirror reflects sunlight onto a liquid-filled tube, and the hot water produced in that tube is used either to drive a turbine to produce power, or for heat for industrial uses or space heating. The MIT team – Professor Evelyn Wang and grad student Nenad Miljkovic – is working on hybridizing the system to do both at once by modifing that tube with a series of concentric tubes within it.


Their first tube-within-the-tube would contain the thermoelectric material, which would take advantage of a temperature gradient to produce power. This thermoelectric system would have pretty low efficiency, the researchers say – but that's OK, because homes generally don't need too much electricity. They need some, but they need a lot more heat – and the MIT design produces that by using an even narrower tube at the center of their device containing what's called a thermosiphon. This is a device that "draws heat away from the 'cold' part of a thermoelectric system," according to MIT, "passively transferring heat from the thermoelectric cold side and alleviating the need to pump cooling fluid as in a conventional parabolic-trough system."


The heat carried away by the thermosiphon could then be used to heat water for, well, hot water, but also space heating and industrial processes.


Abraham Kribus, a professor of mechanical engineering at Tel Aviv University in Israel who was not involved in this research, told MIT that in their paper on their work, Wang and Miljkovic describe a "a fresh approach to solar energy conversion" but that some questions remain – as would be expected. "This is the situation at early stage with every nonconventional idea," Kribus said. "Overall, the paper shows a nice start and a very capable team behind it."


 

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

China CORNEX signed cooperation agreement with the Italian Cestari Group

On November 13, CORNEX signed a strategic cooperation agreement with the Italian company Cestari Group in Wuhan, Hubei Province, China. According to the agreement,...

Solar Leader Enphase Energy Cutting 500 Jobs

California-based Enphase Energy, a company known for its solar power and electric vehicle (EV) charging technology, announced it is laying off about 500 workers....

Cincinnati’s solar array powers city operations, tens of thousands of homes

A sprawling solar array in Highland County now powers 20% of Cincinnati's operations and tens of thousands of homes. Cincinnati’s 900-acre solar farm was completed...

1.2-GW solar panel assembly facility to open in Puerto Rico

A contract solar panel assembly facility will soon open in Aguadilla, Puerto Rico, that will supply the utility-scale market on the island and hopefully...