星期三, 25 12 月, 2024
Home PV News A new path opens to perovskite development

A new path opens to perovskite development

Scientists in the United States claim to have proven the existence of an atomic-scale phenomenon in a perovskite material. Using powerful, ultra-fast bursts of light, the group was able to capture images of the ‘Rashba effects’ within the material. The researchers say the phenomenon could be harnessed to create new opportunities for PV and other perovskite-based devices.

Source:pv magazine

Perovskites have attracted plenty of attention in recent years, with a string of discoveries and achievements demonstrating the apparent potential for the material to be used in low-cost, high-efficiency solar cells as well as LEDs and other devices.

Even as researchers demonstrate ever more efficient and reliable perovskite devices, however, debate has continued about the molecular properties of perovskites and the chemical explanation of why the structure lends itself so well to solar cell application. Understanding the chemical building blocks and the mechanisms at work deep within the material could guide optimization for various purposes.

Scientists at Ames Laboratory in Iowa studied methylammonium lead iodide (CH3NH3PbI3) and devised a new method of delving into the material’s quantum behavior. That enabled them to prove the existence of a mechanism known as the Rashba effect, a phenomenon concerning momentum and the spin of electrons as they orbit the nucleus of an atom.

Proven

The method is described in the paper Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite CH3NH3PbI3, published in Physical Review Letters.

The group used powerful bursts of light at trillions of cycles per second to induce quantum motion in the material, and a second burst of light to observe and record the motion.

“Our discovery settles the debate of the presence of Rashba effects: They do exist in bulk metal halide perovskite materials,” said Ames Lab senior scientist Jigang Wang. “By steering quantum motions of atoms and electrons to engineer Rashba split bands, we [achieved] a significant leap forward for the fundamental discovery of the effect which had been hidden by random local fluctuations.”

The Ames group said its discovery opens up further possibilities for researchers to harness Rashba effects using quantum control and ultra-fast engineering to influence the phenomenon. That could include optimizing materials for photovoltaic applications, according to Wang.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Liu Zhuo, Sales Manager of TBEA, delivered a speech titled “Green Energy Makes Life Better” at COP16

On the afternoon of December 9, Liu Zhuo, Sales Manager for the Middle East Region at TBEA, delivered a speech titled "Green Energy Makes...

Side Event Themed “Solar empowers land and People from scarcity to prosperity:Integrated Solutions for water, food and ecosystems” took place at COP16

The side event of the 16th Conference of the Parties to the United Nations Convention to Combat Desertification (UNCCD) (COP16) "Solar empowers land and People from...

COP16 China Pavilion Side Event Series Report: Wang Weiying of China Renewable Energy Engineering Institute Proposed Coordinated Development of Renewable Energy and Ecology in...

The China Pavilion held a side event with the theme of "Planning and Ecological Design of Solar PV Power Stations in Desert Areas" on the...

Gao Sheng of Gaoming Technology said Solar greenhouses promote the development of agriculture in desertified area at COP16

The 16th Session of the Conference of the Parties to the United Nations Convention to Combat Desertification (UNCCD) (COP16) "Off-grid Solar Energy Empowers...