Considering the short term of one to three years, what technology advances may be expected in the CPV sector? What conversion efficiencies might be achieved and costs/kW installed reached? And what, if any, are the technical and investment barriers which must be overcome in order to achieve these forecasts?
Jeroen Haberland, CEO, Circadian Solar
In the next three years lowering manufacturing costs will be crucial to the CPV industry. As well as the gains from adopting best practises and economies of scale, part of the cost reductions will come from advances in cell manufacturing techniques to lower the amount of material required in each cell. Exploiting increasingly optimised bandgap combinations, either by metamorphic growth or by layer transfer techniques, will produce cells with higher fundamental efficiency limits.
We expect the current trend of 1% annual increases in research cell efficiency, from the 2010 level of 42%, to continue, although advances in cells with more optimum bandgap combinations could deliver more significant increases. Production cell efficiencies meanwhile will most likely continue to lag behind world record research cell efficiencies by 2%-3%. Overall system efficiencies are expected to rise to around 32% by 2013. This will be driven not just by cell efficiency increases, but also by the combination of high efficiency optics, optimal concentration factor, innovative thermal management, high accuracy solar tracking and through automated precision assembly too.
Commercially, the emphasis will increasingly be placed on levelised cost of electricity (LCOE), rather than just system efficiency and system price/watt, since LCOE is the key determining factor in commercial payback and return on investment.
The key barrier to investment is 'bankability' — the requirement to guarantee to financiers the kWh energy yield from CPV systems over 25 years for a given investment in the plant. Without this, either the cost of finance will be very high, or there will be no finance. Publicly funded projects are one of the best/only ways to demonstrate bankability and well thought out incentives, such as feed-in tariffs, will be an important enabler for the industry to reach the economies of scale necessary to reduce system costs.
Carla Pihowich, Senior Director of Marketing, Amonix
The most important technology advances in CPV solar over the next three years will be performance improvements to III-V multi-junction cells and how they are integrated into CPV.
Amonix incorporated III-V multi-junction cells into our systems in 2007 leading to dramatic improvements in efficiency — currently 39% at the cell level, which translates into 31% at the module level and 27% at the system level. At these levels of efficiency, CPV has by far the greatest efficiency of any solar technology. In addition, as we have done in the past, Amonix will deploy performance improvements over the next year that will lessen the gap between cell and system efficiency. In the years to come, we expect multi-junction production cell efficiencies will reach 42% or higher using current or new high-efficiency cell designs.
On the question of cost, we believe that CPV offers greater potential for cost reduction than conventional PV technologies such as single-crystal silicon and thin-film PV, which are nearing performance limitations that will make it difficult for them to drop below their current installed system costs. In contrast, the CPV performance advantage has plenty of headroom and can achieve continual reductions in the levelised cost of electricity (LCOE).
Achieving the cell and system efficiencies is not without its challenges — cell performance must be effectively transferred to production environments, for example. But we believe these challenges can be managed. Bottom line, efficiency improvements combined with the future cost advantages of CPV over PV, the greater deployment flexibility — and the advantage of using no water compared with CSP systems — make CPV the best choice for utility-scale solar deployments in sunny and dry climates.
Nancy Hartsoch, Vice-President Sales and Marketing, SolFocus
In 2010 industry-leading CPV companies have become commercial, demonstrating scalable deployment, bankable products, and volume manufacturing. So what does lie ahead for CPV?
One way to describe CPV's path over the next one to three years is that it will have a steep trajectory. CPV conversion efficiencies are on a steep upward path. System efficiencies of 26%+ will continue to increase as CPV cell efficiencies move from 39% upwards to 45%.
Manufacturing costs for CPV systems are also on a steep trajectory, but going downward, as factories are ramped from manufacturing hundreds of kW to hundreds of MW per year. The upward efficiency trajectory combined with the rapidly declining manufacturing cost trajectory provides a very steep reduction in terms of the levelised cost of electricity (LCOE) for CPV in the upcoming three years.
In 2010 CPV won competitive bids around the world against other PV technologies because of its high energy yield resulting in a very strong value proposition, which will become even more commanding in the future. Bankability of the technology remains perhaps the biggest hurdle, however, this is rapidly changing through thorough due diligence on the technology and creative approaches to reduce the risk for developers.
Certification to industry standards for CPV combined with multiple years of on-sun performance and reliability data also contributes to the increasing adoption of CPV into large distributed and utility-scale projects around the globe.
With 150 MW forecast to be deployed in 2011, CPV has finally turned the corner on commercialisation and is moving forward into a market where its high energy yield with the largest energy output/MW installed has the potential to dramatically change the opportunity for the PV market. Add in the need for environmentally friendly technology and it provides an extremely low carbon footprint, along with low cost of energy, It becomes easy to forecast a major impact by CPV solar.