星期五, 22 11 月, 2024
Home PV Technology Ultra-thin 2D perovskite solar cell with 18.3% efficiency

Ultra-thin 2D perovskite solar cell with 18.3% efficiency

The solar cell was built with a layer of organic cations between the iodide on top, and lead on the bottom enhanced interactions between the layers. Its creators designed the device after they discovered that, when the sunlight hits a 2D perovskite, it contracts the space between atomic layers in the material.

Source:pv magazine

A U.S.-French research group has developed a 2D perovskite solar cell with enhanced electron flow and a threefold increase in the electron conduction of the perovskite material.

Perovskite cells built with 2D hybrid materials are generally known for being more stable than conventional, 3D devices, due to the protection provided by the organic ligands, and exhibit large exciton binding energies. “2D perovskites have tremendous stability but are not efficient enough to put on a roof,” the scientists explained. “The big issue has been to make them efficient without compromising the stability.”

The researchers designed the new cell after they discovered that, when the sunlight hits a 2D perovskite, it contracts the space between atomic layers in the material. “We find that as you light the material, you kind of squeeze it like a sponge and bring the layers together to enhance the charge transport in that direction,” they further explained.

Under standard illumination conditions, the 2D perovskite material used for the cell contracted by 0.4% along its length and about 1% top to bottom. “It doesn’t sound like a lot, but this 1% contraction in the lattice spacing induces a large enhancement of electron flow,” said research co-lead author Wenbin Li. The perovskite material’s lattice also showed lower degradation rates compared to 3D materials when it was heated to 80 degrees Celsius.

The solar cell was built with a layer of organic cations between the iodide on top, and lead on the bottom enhanced interactions between the layers and achieved a power conversion efficiency of 18.3%. “We’re on a path to get greater than 20% efficiency by engineering the cations and interfaces,” co-lead author Siraj Sidhik said. “It would change everything in the field of perovskites, because then people would begin to use 2D perovskites for 2D perovskite/silicon and 2D/3D perovskite tandems, which could enable efficiencies approaching 30%.”

The cell is presented in the study Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells, published in nature nanotechnology. The research group comprises scientists from the Rice, Purdue and Northwestern universities, and U.S. Department of Energy national laboratories in Los Alamos, Argonne and Brookhaven and the Institute of Electronics and Digital Technologies (INSA) in Rennes, France.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

China CORNEX signed cooperation agreement with the Italian Cestari Group

On November 13, CORNEX signed a strategic cooperation agreement with the Italian company Cestari Group in Wuhan, Hubei Province, China. According to the agreement,...

Solar Leader Enphase Energy Cutting 500 Jobs

California-based Enphase Energy, a company known for its solar power and electric vehicle (EV) charging technology, announced it is laying off about 500 workers....

Cincinnati’s solar array powers city operations, tens of thousands of homes

A sprawling solar array in Highland County now powers 20% of Cincinnati's operations and tens of thousands of homes. Cincinnati’s 900-acre solar farm was completed...

1.2-GW solar panel assembly facility to open in Puerto Rico

A contract solar panel assembly facility will soon open in Aguadilla, Puerto Rico, that will supply the utility-scale market on the island and hopefully...