星期三, 23 4 月, 2025
Home PV News European consortium bid to bring 25.4%-efficient heterojunction-IBC solar cell into mass production

European consortium bid to bring 25.4%-efficient heterojunction-IBC solar cell into mass production

The EU-funded Nextbase project aims to manufacture heterojunction, interdigitated back-contact solar modules for less than €0.275/W. Solar panels featuring the Nextbase cell tech are expected to have a conversion efficiency of 23.2%, according to the European Commission.

Source:pv magazine

The Nextbase project backed by the European Commission with €3.8 million, unites European companies and research institutes aiming to manufacture solar panels with heterojunction (HTJ) and interdigitated back-contact (IBC) technology.

A statement issued by the commission said production equipment supplied by Swiss HJT company Meyer Burger would be used to produce 25.4%-efficient HTJ-IBC solar cells on a commercial scale.

That efficiency figure would constitute “a European record for an industrially-feasible version of IBC-SHJ [silicon heterojunction] technology,” said project coordinator Kaining Ding, of German research center Forschungszentrum Jülich GmbH, which is a partner in the initiative. Ding added: “The current laboratory world record for a silicon solar cell is 26.7%, which was also based on the IBC-SHJ concept but was very expensive to make. Our approach is close to the optimum level.”

Prototype

Nextbase consortium researchers have developed a prototype four-cell by four-cell solar module they say demonstrated efficiency of 23.2%. The research team said it has also developed a manufacturing process to enable the production of its PV panels for less than €0.275/W, a figure they say is close to that of standard Asian-made PV technologies.

The research project, which has a total budget of €4.4 million, will now attempt to apply the cell technology on large-area modules and industrialize production.

The other project partners are Italian utility Enel, which makes bifacial HJT panels in Catania; the Netherlands-based Delft University of Technology, material sciences company DSM and grant consultancy Uniresearch; German research institutes the Helmholtz-Zentrum Berlin and Fraunhofer Institute for Solar Energy Systems; French and Belgian peers the National Solar Energy Institute and Imec, respectively; Switzerland’s École Polytechnique Fédérale de Lausanne and the Swiss Center for Electronics and Microtechnology; Norwegian monocrystalline silicon crystal provider Norwegian Crystals; and the Institute of Physics of the Czech Academy of Sciences.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

CLOU Electronics Sets New Safety Benchmark in Energy Storage with TS-800 Fire Test Certification

Energy storage has garnered unprecedented attention regarding its safety and reliability. On January 16, 2025, a fire broke out at the Moss Landing lithium...

E.ON cooperate with Superdielectrics to develop energy storage

E.ON is now working with a UK-based battery tech firm to advance more environmentally friendly energy storage for households. Energy utility giant E.ON has entered...

Trinasolar Unveils High-Power i-TOPCon Ultra Modules at Korea’s Green Energy Expo

Trinasolar, a global leader in smart PV and energy storage solutions, unveiled its revolutionary i‑TOPCon Ultra technology at Korea's Green Energy Expo in Daegu....

City of Fresno can’t stop adding solar and storage to city-owned sites

Today the City of Fresno Dept. of Public Utilities (DPU) in California conducted a “Flip the Switch” ceremony to celebrate the completion of solar...